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In  this paper we study the development of large-scale wavelike eddies, or 
instability waves, in a turbulent free shear flow. The model is based on splitting 
the flow into three components: the mean flow, the instability wave and the 
fine-scale turbulence. The wave is considered to be sufficiently weak so that it is 
developing in a pre-existing, known turbulent mean shear flow. The basis for the 
wave development is its time-averaged kinetic energy flux equation in integral 
form and the wave description is obtained through a shape assumption: the 
amplitude is determined by the energy equation; the shape function and local 
characteristics are determined by the local linear stability theory. The wave 
energy changes as it is convected into a different streamwise position where 
its instability properties change. The energy balancing mechanisms are produc- 
tion, work done by the wave pressure gradients and the energy transfer between 
the wave and the fine-scale turbulence via the wave-induced Reynolds stresses. 
The latter is taken to be dissipative via an eddy-viscosity model, inertia4astic 
effects not being considered. According to forceful evidence from observations 
in turbulent free shear flows, the wave development is taken as being upstream 
controlled and begins from a distinct origin rather than being the result of local 
forcing by variations of the fine-scale turbulent Reynolds stresses. The wave 
energy flux initially grows via energy supplied by the inflexional mean flow when 
the shear layer is relatively thin but eventually decays through action of the fine- 
scale turbulence, directly via the dissipative energy transfer and indirectly via 
the turbulence-diffused, rapidly thickened mean shear flow, which renders the 
production mechanism less available. Numerical calculations are carried out for 
a turbulent mean shear flow, with speed Tie on one side and zero in the ambient 
region, its distribution being approximated by a sine profile in the Howarth- 
Dorodnitsyn co-ordinate. The flow develops from an initial boundary layer of 
finite thickness x,, to a similar free-mixing layer far downstream. The wave is 
characterized by a dimensionless frequency parameter Po formed from the wave 
frequency@*, ZC, and &,. Convection speeds, in general, increase in the downstream 
direction. They are subsonic initially for Mach numbers Me < 2 and remain 
subsonic for Me < 1.5. For Me > 2 peaking in the local intensity levels occurs 
when convection speeds are supersonic and this may explain the observed 
supersonic far-field radiation a t  the higher jet speeds. Induced wave patterns 
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in the ambient region are determined by the complex instability-wave speed 
rather than the real convection speed alone, consequently ambient wave patterns 
exist even a t  subsonic convection speeds, but are more heavily damped near the 
origin and fan out laterally downstream for a given Po. According to the present 
model, if the waves are given an upstream excitation level about 10-3-10-2 
times that of Ue,  resembling, for instance, the levels of the upstream wall turbulent 
boundary-layer fluctuations over a wide, low-frequency, spectrum or other pos- 
sible disturbances a t  the nozzle exit, the development of the calculated near 
noise field as a function of downstream distance bears striking resemblances to 
the observed near jet noise field and is thus fully sufficient to explain such obser- 
vations. This comparison leads to the suggestion that the essential energetics of 
the large-scale wavelike eddies are that they are formed a t  the origin, amplified 
and subsequently decay in a developing mean turbulent free shear flow. Therefore 
this leads also to a most important indication of shear-layer instabilities and noise 
control. If their historical evolution can be controlled so can the noise from the 
damaging wavelike eddies. Methods of control on the basis of this model are 
discussed. 

1. Introduction 
Considerable interest, in connexion with jet noise suppression technology, has 

developed in the possibility that the large-scale coherent structure of the jet, 
a manifestation of free shear flow instabilities, provides the dominant source of 
jet noise (Bishop, Ffowcs Williams & Smith 1971; Crow & Champagne 1971; 
Liu 1971 b;  Michalke 1969; Mollo-Christensen 1960, 1967; Sedel’nikov 1967; 
Tam 1971, 1972). It would appear natural then to explore certain properties of 
such sound sources through consequences of the linearized stability theory for 
parallel flows. However, the calculation of aerodynamic sound generation 
(Lighthill 1952, 1962) with such modelled source distributions is not entirely 
free from conceptual difficulties. For instance, for spatially growing waves, which 
is the case of interest in a real problem, the wave amplifies exponentially and 
becomes large with the downstream distance, rendering invalid the original 
linearization. If a finite region is considered so that the exponentially growing 
wave is cut off, more or less arbitrarily, then the calculated far-field sound, which 
depends on the cut-off, is correspondingly arbitrary. I n  this paper, our main 
purpose is to attempt to provide some understanding, rather than striving a t  a 
numerically accurate computation scheme, of the development of a modelled 
source distribution on the basis of instability-wave evolution in a growing mean 
turbulent free shear flow. I n  this case, the ‘cut-off’ is a consequence of the 
energetics of the problem rather than an arbitrary input. Such amplifying 
and subsequently decaying instability waves, as compared with a train of 
constant amplitude waves, generate sound even a t  subsonic wave speeds and it 
is not difficult to conceive that such orderly fluctuations are more efficient 
emitters than a collection of random fluctuations which occupy the same 
volume (Mollo-Christensen 1960). Moreover, the concept of growing and 
subsequently decaying emitters is not inconsistent with experiments which 
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indicate that the dominant sound sources in a (non-screeching) jet are located 
far downstream from the nozzle lip (Bishop et al. 1971; Howes et al. 1957; 
Lassiter & Hubbard 1956; Mayes, Lanford & Hubbard 1959; Nagamatsu & 
Horvay 1970; Potter & Jones 1968; Westley & Lilley 1952). 

The representation of the entire turbulent velocity fluctuation by a collection 
of waves was considered by Landahl (1967) for wall-bounded turbulent shear 
flow, following the earlier work of Malkus (1956). Each of these waves satisfies 
a non-homogeneous Orr-Sommerfeld equation; the nonlinearities are taken as 
weak and are considered to be prescribed. However, free-wave disturbances in 
walI-bounded mean shear flows are strongly decaying, thus Landahl considered 
that the presence of these waves is due to a continuous driving mechanism arising 
from variations of the weak nonlinearities, namely the Reynolds stresses. Dis- 
cussions of the role of wavelike representations of turbulent velocity fluctuations 
are also given by Lumley (1967)’ Moffatt (1967, 1969) and Lighthill (1969), 
and by Phillips (1969) and Kovasznay (1970) in their recent reviews of turbulent 
shear flows. Experiments on single imposed disturbances in turbulent channel 
flow show that such disturbances propagate like Tollmein-Schlichting waves 
and indeed decay strongly downstream from the oscillating ribbon used in the 
forcing (Hussain & Reynolds 1970). Such Tollmein-Schlichting type waves in 
wall-bounded turbulent shear flows, if they exist on a ‘natural’ basis, would thus 
be extremely difficult to detect. 

The observational situation for turbulent free shear flows, on the other hand, 
is drastically different. We cite, as a glaring example, the recent observations 
of Brown & Roshko (1971, 1972) of the turbulent mixing region of gases of dif- 
ferent densities, including the special cases of homogeneous mixing and wake 
flows. One such observation is reproduced in figure 1 (plate I), which reveals a 
pronounced large-scale wave structure, ‘naturally ’ and distinctly originating 
from the beginning of the mixing layer. Much earlier, ‘vortex shedding’ was 
observed to take place in a turbulent wake a t  large Reynolds numbers (Grant 
1958; Roshko 19601, resembling the nonlinear disturbance stages of the unstable 
laminar wake behind a flat plate [Sato & Kuriki 1961; Kendall1967 (see Betchov 
& Criminale 1967, figure 31.1, p. 159)]. Disturbances in such two-dimensional 
mean shear flows appear to remain two-dimensional. Waves in a turbulent jet 
were observed by Bradshaw, Ferriss & Johnson (1964). In  the round turbulent 
jet the energetically unimportant fluid in the vicinity of the jet boundary, left 
behind by the propagating wave, essentially masks the wavy structure that is 
well within the turbulent fluid where the mean flow density-vorticity product 
has an extremum. Through fog seeding and forcing a t  the nozzle exit of a free 
turbulent jet, Crow & Champagne (1971) further observed that the orderly struc- 
ture is indeed a propagating instability wave at the forcing frequency which 
originates distinctly a t  the nozzle lip. Using hot-wire probes they further showed 
that the fundamental component grows exponentially with distance downstream 
and eventually decays, the first harmonic component is detected in regions where 
the fundamental deviates from the exponential behaviour and the mean flow 
spreads more rapidly than in the absence of forcing. The simulated free turbulent 
jet on a water table also exhibits unstable behaviour (Ffowcs Williams 1969a ; 
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Webster 1970). There is thus much more convincing observational evidence 
that free turbulent shear flows can sustain the wavelike disturbances, much in 
the same way as can laminar mean flows with extrema in the mean density- 
vorticity product (Lees & Lin 1946). In  this case one represents such observed 
wave disturbances through a wavelike description, as is appropriate provided 
that the wave component can be extracted from the total fluctuation, rather 
than representing the instantaneous fluctuation by a collection of waves for 
which there is no observational support. In  fact, Liepmann (1964) suggests the 
name ‘turbular fluid’ for the fine-scaled turbulent fluid and suggests that 
the large-scale instability of such turbular fluids should be studied in the same 
manner as laminar flow instability. 

As far as free turbulent shear flows are concerned there does not appear to be 
evidence indicating that the local turbular fluid arranges itself to give bursts 
of white noise which would maintain theinstability wave, nor is such a mechanism 
conjecturally necessary. The local variations of the turbular Reynolds stresses 
are more likely to be wave induced and, although there is the possibility that 
energy could be extracted from the turbular fluid by the wave, it can be easily 
seen that the wave is primarily maintained through the production mechanism 
associated with inflexional mean velocity profiles. In  fact, there is more con- 
vincing evidence that the downstream wave development is a process controlled 
by upstream initial conditions (Brown & Roshko 1971, 1972; Crow & Cham- 
pagne 197 1) in a free turbular fluid, much in the same manner as in a free laminar 
shear flow [see, for instance, Kendall(l967) in Betchov & Criminale (1967, figure 
31.1, p. 159)]. The initiation of the instability wave under ‘natural’ conditions 
is most likely to occur in the upstream region of free shear flows where the mean 
rate of strain is large, and in a real turbulent jet the initiating mechanisms 
conceivably include the oscillating exit flow, vibrations of the nozzle wall and 
noise from the internal flow, with the lower bound being the broad-band low- 
frequency oscillations of the turbulent boundary layer preceding the mixing 
region. That developing instability waves (or wavelike eddies) are controlled 
by upstream conditions, though familiar in laminar transition problems (KO, 
Kubota & Lees 1970; Liu & Lees 1970), is of considerable technical importance 
to jet noise suppression, the enormously important inference being that the 
development of the large-scale coherent structure can be controlled through 
modification of the initial conditions. 

In $ 2  we present a model of such large-scale instabilities, or wavelike eddies, 
based on splitting the total flow into three components: the time-independent 
mean flow, the instability wave and the turbular fluid. The ideas behind such a 
splitting procedure are not new (Hussain & Reynolds 1970; Kendall 1970; Liep- 
mann 1964; Phillips 1966; Townsend 1956), however, the problem for the insta- 
bility wave is here recast into a form whereby, from an upstream point of forcing 
a t  a given frequency, its downstream development can be studied according 
to approximate techniques used for laminar free shear flow instability (KO et 
al. 1970; Liu & Lees 1970; Liu 1971a, b ;  Stuart 1958). Such forcing is considered 
sufficiently weak so that the energetics of the wave development are not coupled 
to either the mean flow or the turbular fluid, and this brings out the essential 
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physical features of the streamwise development of the wave. The basis is the 
von KStrmStn integral form of the time-averaged kinetic energy flux equation for 
the instability wave. The wave structure closure is obtained through a shape- 
function assumption which represents the wave as the product of an amplitude 
function to be determined from the kinetic energy equation, and a local shape 
function to be determined from the linear eigenvalue problem corresponding 
to the local mean flow. The evolution of the wave kinetic energy flux is given by 
the balances between the work done by the instability-wave pressure gradients, 
energy transfer from the mean flow and energy transfer between the wave and 
the turbulence. The latter mechanism is here tentatively modelled through 
an eddy viscosity, which renders the turbular fluid dissipative. Detailed 
numerical applications of the model are obtained with a known, specific mean 
free turbulent shear flow based on the sine profile (Alber & Lees 1968). This 
closely approximates the mixing region, which adjusts from an upstream initial 
boundary layer of finite thickness to  a similar mixing region far downstream; 
its properties are summarized in 5 3. In  $4 some results from the local eigen- 
value problem are discussed, particularly the wave speeds. In  3 5 the physical 
balances which contribute to the instability-wave energy flux development are 
discussed. Some of the salient features of the observed near jet noise field are 
interpreted in terms of the present model in 5 6. In  $ 7 suggestions for further 
work, particularly experiments in the present context, are discussed. 

2. Formulation of the problem 
We shall indicate how the most general formulation within the present frame- 

work could be obtained but the associated equations will not be stated in their 
most general form. After arguments leading to simplification only the kinetic 
energy flux equation for the large-scale instability wave, which is the only one 
we shall use, will be given. 

We start from the Navier-Stokes equations for a compressible fluid. Any flow 
quantity q which is a function of time and spatial co-ordinates is split into three 
parts. These consist of the time-independent mean flow ij, the instability-wave 
component q’ and the fine-scale turbulence component q” (Hussain & Reynolds 
1970; Kendall 1970; Liepmann 1964; Phillips 1966; Townsend 1956). First, the 
ordinary time average, denoted by an overbar, is defined and is taken over a t  
least a period of the wave component. In  order to extract the periodic wave com- 
ponent from the total fluctuation the phase average (Phillips 1966), denoted by 
angular brackets, is defined as the average over a ‘large’ number of periods of 
the wave a t  a fixed physical position and is realizable in the laboratory (Hussain 
& Reynolds 1970; Kendall 1970). The phase average of a single turbulent quan- 
tity is zero. Thus the instantaneous periodic wave component is obtained from 
the phase average of the total flow quantity and so, subtracting out the mean flow 
component, Q’ = (a) - ij. By definition the instability wave and the fine-scale 
turbulence are uncorrelated, thus the time average of their products vanishes. 
The phase average of the product of the turbulence quantities after subtracting 
out the steady part, (q”q”) - ql’q“, is periodic and oscillates a t  the same frequency 

- 
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as theinstability wave. I n  fact, the product of such quantitieswith the appropriate 
rates of strain of the instability wave provide the energy exchanges between 
the large-scale structure and the fine-scale turbulence, as pointed out by Hussain 
& Reynolds (1970) in their consideration of the incompressible flow problem. 

The steady mean flow equations are obtained by substituting the flow quan- 
tities in the three-component form described above into the Navier-Stokes 
equations for a compressible fluid and then taking the timeaverage. The equations 
for theinstantaneous total fluctuation are obtained through the subtraction of the 
mean flow equations from the original Navier-Stokes equations. The conserva- 
tion equations for the instability wave are obtained from those for the total 
fluctuation through phase averaging. The equations for the fine-scale turbulence 
are obtained similarly. The ‘field equations’ for the wave component thus 
obtained then contain the effect of the fine-scale turbulence, which plays the role 
of ‘pseudo-viscosity’. The instability wave is coupled to the mean flow if the 
exchange of energy is sufficient to affect the mean flow. The coupling of the 
mean flow to the fine-scale turbulence through the time-averaged turbulent 
stresses is an inherent difficulty, to which this paper does not address itself. 

Our main purpose here is to extract from the developing turbulent free 
shear flow the evolution of the instability wave. The fine-scale turbulence, 
whose details we do not wish to seek, then acts in two principal ways in deter- 
mining the development of the instability waves: one is through the turbulent 
diffusion of the mean flow, which provides the indirect effect through the pro- 
duction mechanism, the other, which is more direct, is the energy transfer 
mechanism between the instability wave and the fine-scale turbulence. Hence, 
the fine-scale turbulence provides the ‘rate of spread’ for the mean flow and the 
‘rate of dissipation ’ for the instability-wave kinetic energy if the energy trans- 
fer mechanism is taken as one-way. For our purposes, we are then entirely satis- 
fied with the phenomenological treatment of the fine-scale turbulence problem. 
I n  fact, we invoke Morkovin’s (1964) hypothesis that  the turbulence structure is 
unaffected by compressibility and thereby neglect contributions to the pressure 
and density fluctuations by the fine-scale turbulence. 

The most important physical consequence concerning instability-wave de- 
velopment of the formalism described above is the streamwise evolution of the 
flux (convected by the mean flow) of the time-average instability-wave kinetic 
energy across the shear layer. For simplicity, we state the two-dimensional form 
obtained from the Prandtl boundary-layer form of the differential equation for 
the time-averaged kinetic energy of the instability wave: 

J .  T. C. Liu 

where x and y are the streamwise and normal co-ordinates, respectively, U is the 
x component of the mean flow velocity, p the mean flow density, u’ and v’ the 
x and y components of the instability wave velocity, p’ its density, p’ its pressure 



Developing large-scale wavelike eddies 443 

contribution and p = j3 +p’. The rate-of-strain components of the instability 
wave are defined as 

ex2 ‘ - - adlax, eku = &auipy+avi/ax), el,, = adlay; ( 2 . 2 )  

the wave-induced turbulent Reynolds ‘stresses’, which are instantaneous 
quantities, are 

where u“ and v“ are the turbulent contributions to the x and y components of the 
velocity. The sources or sinks which appear on the right side of (2.1) are: (i) the 
work done owing to the instability-wave pressure gradients, which effect ex- 
changes between the wave kinetic energy and the mean flow thermal energy, 
(ii) energy conversion from the mean flow, or ‘production’, and (iii) kinetic 
energy exchanges between the wave and the fine-scale turbulence. Molecular 
viscosity effects, for all practical purposes, are entirely neglected. Absent from 
(2.1) because of the Prandtl boundary-layer approximations are streamwise 
‘ conduction ’ owing to the wave-induced turbulent Reynolds stresses and 
‘diffusion’ owing to the wave fluctuations themselves. The latter, however, 
would also be absent if we considered only the fundamental component and 
worked to the order of the amplitude squared. Writing (2.1) in the above form 
implies that the two-dimensional instability wave develops in a two-dimensional 
mean flow. This simplification, though not a necessary one, is supported, for 
instance, by the pronounced two-dimensional large-scale structure in Brown & 
Roshko’s (1971, 1972) repeated observations of the turbulent mixing region. 

The instability which arises is essentially a dynamical one, associated with the 
existence of extrema in the mean flow density-vorticity product (Lees & Lin 
1946),  which occur within the turbulent fluid. In  this case the concentration of 
the instability-wave kinetic energy and the dominant contributions to the last 
integral on the right side of (2.1) are confined to the turbulent region. In  what 
follows, we explore the consequences of a linear relationship between the wave- 
induced Reynolds stresses and the instability-wave rate of strain (Liu 1971a;  
Reynolds 1972) and tentatively take 

I& = 2cekx, 7& = 2sek,, T ; ~  = Zee;,, (2.4) 

where E is an isotropic eddy viscosity and is here identified with that of the mean 
flow problem in the turbulent region (see, for instance, Alber & Lees 1968). 
The energy exchange integral, the last in (2 .1) ,  thus becomes identical to that for 
viscous dissipation except that the molecular viscosity coefficient is replaced by 
p. Because of the more efficient activity of turbulent diffusion relative to mole- 
cular viscosity, instability waves in a turbulent free shear flow are much less 
spectacular than those in a correspondinglaminarflow (Liu 197 1 a). Consequently, 
the severely curtailed instability wave contributes much less effectively to energy 
exchanges with the mean flow. Thus, except for relatively large initial dis- 
turbances, the mean flow spreading is primarily achieved through the fine-scale 
turbulent diffusion and is therefore uncoupled from the instability-wave problem. 
This indeed is the case for those initial wave energies triggered, for instance, by 
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1 
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consideration is a ‘local similarity’ which requires the eigenfunction n ( y ;  g) to 
adjust instantaneously to the local mean flow. The burden of relaxation or history 
is entirely placed upon the amplitude function A (6) .  

Upon substitution of (2 .4 )  and (2 .5 )  into (2 .1 ) ,  using the localrelation 

d A / d ( x / l )  = iaA 

to evaluate x derivatives of the instability-wave quantities occurring inside the 
integrals, we obtain 

where the following integrals, known functions of 6, are defined: the kinetic 
energy flux integral 

d( I A I ‘ Z I k e ) / d E  = I A I 2(ITs - I p  - R,l 4)  9 (2 .7 )  

( 2 . 8 a )  

the production integral 

4.m = j - (PZ4 +Pa$) (Wrl) dy lT ,  (2 .8b )  
--m 

the pressure work integral 
m 

I J ~  = ( 7 ~ y j  [~T(&~F - z m )  + + a4ni)l ay, ( 2 . 8 ~ )  

where a tilde represents the complex conjugate. The integral representing the 
rate of kinetic energy transfer from the instability wave to the fine-grained tur- 
bulence, including the phenomenological assumptions about the wave-induced 
Reynolds stresses, now becomes a ‘turbulent dissipation ’ integral: 

- W  

m 

I$ = 2 1  (T21a12($IP12+ la$12)+iT[a2$Fi-~24Pi+(~1a12)(F$i-~4r)]  
-m 

+ [($lal2) ( / $ ’ I 2 )  + IP’121}w, ( 2 . 8 4  

where I is unity in the turbulent shear layer and zero outside. The turbulent 
Reynolds number is defined as R,  = GeZ/C7 where C is an incompressible eddy 
viscosity, related to the compressible eddy viscosity by p2e = pFC, with the effect 
of compressibility reduced to that of finding the appropriate reference density 
pr (Alber & Lees 1968).  The eigenfunctions are normalized so as to make 1.412 

the dimensionless kinetic energy, per unit I, of the instability wave across a slice 
of the shear flow : 

It may also be interpreted as the energy density in terms of the Howarth co- 
ordinate. 

As it stands, (2.7) admits an exact solution for the dimensionless kinetic energy 

where go is the dimensionless initial streamwise position where disturbances are 
f i s t  imposed or originate. The functions in the integrand of (2 .9 )  are tabulated 
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for each specified dimensionless frequency parameter Po = Po(6,) = ,8*Z(~,)/U, 
and Mach number Me. The integral sums up the history of the local energy bal- 
ancing mechanisms; whatever the kinetic energy flux integral has accomplished 
up to 6 depends upon what physical balances it has suffered between go and 6. 
Both 1 and 4, are positive quantities; I,, is positive if the mean flow is favourable 
in generating the wave Reynolds stresses so as to effect energy transfer to the 
wave, asis usually the case. I, is responsible for the exchange between instability- 
wave kinetic energy and the mean flow thermal energy and its sign depends 
on the local phase relationships between the instability-wave velocity com- 
ponents and the respective pressure gradients. I$ is positive owing to the stress- 
strain relationship assumed and therefore represents the rate of energy transfer 
from the wave to the turbulence. 

The initial condition is specified a t  6 = 6, through jA,12, the energy density of 
the initial disturbance. As we anticipated earlier, the instability wave is most 
likely to originate a t  an upstream location where the mean flow rate of shear 
strain is most intense, in which case 6, = 0. The contribution to the initial energy 
density in a real jet flow could include a great variety of disturbances as we 
discussed in $ 1. However, the lower bound is very likely to be the broad-band 
low-frequency spectrum fluctuations in the wall turbulent boundary layer just 
before the start of the free shear layer for which < Po < 10,. If this is the case, 
the root-mean-square velocity fluctuation, made dimensionless by U, (Kistler 
& Chen 1963), is approximately and this gives an initial disturbance energy 
density level in the range lA,I2 N 10-5-10-4. I n  $5,  in the study of the behaviour 
of ratio on the left side of (2.9) and the mechanisms contributing to its develop- 
ment, IA,I2 need not be specified. When the near jet noise field is discussed in 
$6,  specific values of IA,12 need to be stated in order to estimate the intensity 
levels. However, IAOl2 is an integral quantity and is thus not sensitive to the 
detailed distribution of the initial disturbance level. 

3. The mean flow 
I n  order to bring out the physics of the problem as simply as possible, we 

consider the plane, constant pressure, turbulent mixing region schematically 
illustratedin figure 2. With respect to the jet problem, the ambient region is a t  the 
bottom of figure 2 (y < 0) and the jet exhaust is a t  the top (y > 0), the nozzle 
exit being a t  x = 0. The Howarth-Dorodnitsyn transformed shear-layer thick- 
ness is denoted by 8, the initial shear-layer thickness by 8,. We identify the local 
reference scale length 1 to be 8, hence 1, = a0. The velocity a t  the dividing 
streamline is denoted by G*, its dimensionless form by u* = U*/Ue. Initially, a t  
z = 0, u* = 0 a,nd 8 = 8,. The two-layer momentum integral technique for the 
laminar case introduced by Kubota & Dewey (1964) was adapted by Alber & 
Lees (1968) to the turbulent mixing problem with the assumption that the time- 
averaged turbulent Reynolds stress -pu”v” is related to the mean flow velocity 
gradient through an eddy viscosity B such that -pu“vW = psa;ll/ay and that the 
compressible eddy viscosity s is related to the incompressible one E“ by p2s = p:Z. 

- 
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FIGURE 2. The mixing region: Schematic. 

The effect of compressibility is then relegated to the search for an appropriate 
reference density&, which is found to be p, = Po through comparison with experi- 
ments. In  the present context Po is the ambient density. Alber & Lees (1968) 
made use of the observation that $18, the ratio of transformed momentum to 
shear-layer thickness, is relatively constant ( N 0.125). They also assumed that 
the turbulent Prandtl number is unity and the flow adiabatic, with the mean 
flow temperature related to the velocity through the Crocco relation 

T = l+*(l-uz)N:(y-l). 

The use of this mean flow thus simulates the laboratory cold jet. For a sine 
profile we have 

where rl = 1 - u* and y2 = - u* are obtained by matching the shear stress a t  
the dividing streamline. The results for the streamwise development are 

9.24 u*3 

uK, 1 - 0 . 3 4 ~ "  - 2 . 3 2 ~ " ~ '  
[= -  

- 
S 1 

6, 
7 =  

1 - 0 . 3 4 ~ *  - 2 . 3 2 ~ " ~ '  

where v z 11 is the incompressible spreading parameter 

( 3 . 2 ~ )  

(3.2b) 

and is related to the 
compressible spreading parameter by z Ttrr, where To denotes the ambient 
dimensionless temperature where u = 0, K, N v--l and is approximately 0.06 
and aKe-= constant. We now identify the scale length L with cog, so that now 

= x/Ue6', which is the proper dimensionless streamwise variable. As 5 -+ 00, 

S/S, --f 00 and u* approaches the similar-solution value of about 0.58. Both the 
temperature and velocity profiles and the transformed shear-layer thickness 
involve u* explicitly and [implicitly. This makes the solutions of the local eigen- 
value problem, to be discussed in the following section, explicit functions of 
u* only. The correspondence between u* and k is given by ( 3 . 2 ~ ) .  The relation 
between 8 and its physical value 6 is obtained by inverting the Howarth- 
Dorodnitsyn transformation. In  particular, 8, is related to a0 according to the 

- _  

relation 6, = 8 0 [ 1 f ~ ( Y - 1 ) H 3 .  
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FIGURE 3. Dimensionless wave speed cR as function of dimensionless downstream distance 
E.  -, results from local eigenvalue problem; - - -, inferred cRN from calculated propaga- 
tion angle (figure 4) by assuming zero amplification. (a )  Exit Mach number Me = 1.5 
( M j  = 1.25). ( b )  M e  = 2.0 ( M ,  = 1.49). 

4. The local instability-wave characteristics 
The results from the local linear eigenvalue problem furnish the instability- 

wave shape functions in ( 2 . 5 ) ,  the integrals of which are required to solve for the 
amplitude function (2.9). In  addition to this, certain physically important charac- 
teristics of the local instability-wave behaviour are obtained, and we discuss these 
in this section. These include, for a fixed frequency, the wave speeds (or eddy 
convection speeds), and the propagation angle of induced waves in the ambient 
region. The local amplificrution rates obtained from such locally parallel flow 
considerations are, however, relinquished and the amplitude is given by (2.9), 
which accounts for the downstream development of the mean flow. 

With the mean flow specified as discussed in $3, it is then possible to solve the 
eigenvalue problem (2.6) locally, i.e. for each u* or [, after specifying M, and Po. 
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The boundary conditions for the pressure perturbation function n, obtained 
naturally from (2.6)) are 

n'+a[l-M,2(1-~)2]3n= 0 as q + a ,  (4.1) 

n'-iaTo[M$c2-1]3n= 0 as q-+ -a, (4.2) 

where u = 1 and T = 1, and for the ambient region 

where u = 0 and T = T,. Here, Mf = GZ/yRFo is the 'jet' Mach number referred 
to the ambient sound speed, and Mjc is thus the complex wave speed referred to 
the ambient sound speed. Quantities such a sp ,  a#, Rand 8in (2.5) are obtainable 
in terms of 7~ via the local linear theory. 

Calculations were carried out for Me = 1-5, 2 and 2.5; the corresponding jet 
Mach number is Mj = Me[l  +$(y- l )M%]- t  and takes the values of 1.25, 1.49 
and 1-67, respectively, for y = 1-4. In  figure 3 we illustrate the calculated results 
for the dimensionless wave speed cR by the solid lines. The appropriate sonic 
values, for which cR Mj = 1, are indicated. For the Me = 1.5 case, shown in figure 
3(a), wave speeds are subsonic for all indicated values of the frequency para- 
meter Po and these typify lower exit Mach number cases. There is a tendency 
for the wave speed to accelerate downstream. In contrast, for the Me = 2 case, 
shown in figure 3 ( b ) ,  although all wave speeds begin initially at  subsonic values, 
the higher Po waves become supersonic earlier. For Me = 2.5 some of the higher 
Po waves begin a t  supersonic speeds, but the general situationis similar to the 
Me = 2 case and is not shown here. It is emphasized here that the wave speed, 
or the eddy convection speed, which is important to aerodynamic sound cal- 
culations, is obtained here on the basis of the local dynamics and thermo- 
dynamics of the instability-wave problem rather than being considered as known 
input. 

The direction of the local intensity vector in the ambient region is defined by 
tan 0 = p'v'/p'u', where 0 is the angle measured from x axis. The line perpen- 
dicular to this intensity vector is the wave front in the ambient region, induced 
by the travelling instability wave within the shear layer, which is not unlike a 
Mach wave. Such induced-wave fields are observed in numerous laboratory jet 
experiments (Dosanjh &Yu 1969; Eggers 1966; Jones 1971; Love & Grigsby 1955; 
Mamin & Rimskiy-Korsakov 1967; Ollerhead 1966; Salant, Gregory & Kolesar 
1971). However, the inclination of the induced waves in the ambient region is 
determined by the complex Mach number Mjc rather than by the real Mach 
number Hjc, alone. The angle 0 obtained from the local linear theory is given by 

tan 0 = 2-*([a + (a2 + b2)6]4 + (cI/cE) [ - a + (a2 + b2)3]a), ( 4 . 3 ~ )  

where a = (c$-cf)M;-l ,  b = 2c,cnM;. (4.3 b, c) 

In  the present calculations for the developing mean flow the instability wave 
evolves from a locally amplified wave into a neutral wave far downstream where 
c, -+ 0, then 

tan 0 -+ (c,2M,2- I)+ 

and the Mach-wave case would be recovered if MjcR were indeed supersonic. 

-- 

29 FLM 62 
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FIGURE 4. Induced-wave propagation angle 0 as function of the dimensionless downstream 
distance .$. ---, results from local eigenvalue problem; - - - , inferred 0, from calculated 
wave speed (figure 3) by assuming zero amplification. (a )  Exit Mach number M ,  = 1.5 
(Mi  = 1.25). ( b )  M ,  = 2.0 ( M ,  = 1-49). 

The calculated angles 0 are shown as solid lines in figure 4. The M, = 1.5 case 
is shown in figure 4 (a) ; the decrease in 0 downstream here is associated with the 
subsonic wave speeds of figure 3(a ) .  The M, = 2 case, shown in figure 4 ( b ) ,  
shows that the initial decrease in 0 is associated with the subsonic wave speeds 
in figure 3 (b ) ,  and the increases in 0 downstream with supersonic wave speeds, 
the minimum in 0 occurring near, but slightly preceding, the sonic wave speed. 

In  the ambient region, observed induced waves make an angle 4;. - 0 with the 
x axis and are inclined towards the upstream direction (see, for instance, figure 2 
of Eggers 1966). Inferring the propagation speed cR from the observed 0 would be 
difficult without knowledge of the behaviour of the induced waves. For instance, 
suppose that the calculated solid lines indicating 0 in figures 4 ( a )  and ( b )  were 
observed ones, the wave speeds inferred via the Mach-wave assumption are 
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FIGURE 5. The development of the dimensional kinetic energy flux integral IA1281ke, the pro- 
duction integral ITS, the pressure work integral .I, and the turbulent dissipation integral 
RT1Id as functions of the dimensionless streamwise distance g, where RT is the turbulent 
Reynolds number. The exit Mach number M ,  = 2.0 and the dimensionless frequency para- 
meter Po = 0.05. - - -, net result of a 20 % increase in the RTI. 

then shown as the dashed lines in figure 3 (a)  and ( b )  and are here denoted by cEN.  
For the Me = 1-5 case in figure 3 (a )  such an inference produces supersonic c,,, 
when in fact the actual cR are subsonic. For the Me = 2 case in figure 3 (b )  again 
erroneous cEN results would be obtained where the actual cR are subsonic. When 
cR becomes supersonic downstream and cI + 0,  then c,, -+ cR as one expects. 
On the other hand, when the actual cR become supersonic, an angle 0, can be 
inferred by assuming the Mach-wave case. This produces the set of 0, indicated 
by the dashed lines in figure 4 ( b ) .  Only far downstream would 0, -+ 0 for the 
same reasons as cRN -+ c,. Thus i t  is not altogether a simple matter to infer in- 
stability-wave propagation speeds from optical observations of the ambient 
induced wave field, at least not without the benefit of knowledge of the nature 
and evolution of the instability waves within the shear layer. 

The lateral extent of the ambient induced wave field is limited by exponential 
decay as long as cI $. 0 as can be seen from (4.2). This decay weakens as the local 
parameter cI + 0 downstream. The approximate picture to be derived here is 

29-2 
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that, for a given frequency parameter Po and Mach number Me, the ambient 
induced wave field is more limited in lateral extent near the nozzle lip and 
extends further out laterally far downstream. This may be the explanation for 
the optically observed ambient wave field which appears to fan out in the down- 
stream direction (see, for instance, figure 2 of Eggers 1966). 

5. Development of energy balancing mechanisms 

wave energy flux can now be recast into a convenient form 
For the specific mean flow discussed in $3, the result (2.9) for the instability- 

with the integrand a function of u* only. The subsequent location of {correspond- 
ing to u* is obtainable from ( 3 . 2 ~ ~ ) .  Since the energy flux integral in (5.1) above 
depends on the history of the local energy balancing mechanisms, accentuated 
through exponentiation, it is therefore physically instructive to exhibit the 
streamwise behaviour of the integrals Irs, I, and R?l I$ in addition to the right 
side of (5.1). These integrals are evaluated according to (2.8b-d) and are local 
functions of u*, hence of 6. 

For purposes of illustration, the case Me = 2.0 and Po = 0.05 is shown in figure 
5. The production integral I,, peaks and subsequently decays, the more or less 
pronounced local kinks (second peak) in I,,, being associated with the local wave 
speed becoming supersonic. The pressure work integral Ip, being positive, effects 
a kinetic energy transfer from the wave to the thermal energy of the mean flow. 
The turbulent dissipation integral R$I I$ is obtained for the usual ‘unsuppressed’ 
values for the turbulent Reynolds number R$l E 0.0023 for Me = 2 (Alber & 
Lees 1968). The ratio of the kinetic energy flux integral to  its initial value, as 
given by (5. I), is the net result of the integrated effect of these various balancing 
mechanisms and is shown as the solid line in figure 5. This flux integral first peaks 
and then decays. The dashed line in figure 5 indicates the result of ‘suppression’ 
on the flux integral through an enhancement of the fine-scale turbulence such 
that R&l is increased uniformly by 20 %. The comparison is here appropriately 
made for the same 6 regardless of the value of the spreading parameter co. Be- 
cause of the exponential dependence upon the history of interactions, a small 
increase in Ryl effects a much greater decrease in the flux integral for the same 6. 
‘Suppression’ is much more effective downstream in terms of {, because of 
the {-integrated dependence on the past history. 

As far as the effect of Po is concerned, for a given Me, the peaking of the balanc- 
ing mechanisms shown in figure 5 would occur earlier for higher Po waves. 
For the same Po and the same f ; ,  the energy transfer from the mean flow becomes 
less efficient as Me is increased, thus the availability of I, becomes less and is 
shifted downstream. The turbulent ‘dissipation ’ is more effective a t  lower Mach 
numbers, principally through the dependence of R$l on [ 1 + &(y - 1) The 
net result is that the ratio on the left side of (5.1) is significantly reduced as 
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Me increases and the development is more stretched out in terms of 6. These 
features are borne out in the calculations. 

6. The near jet noise field 
Several experiments, intended to locate apparent noise sources, obtain sound 

pressure-level contours in the near jet noise field in the vicinity of and along the 
jet boundary. These cover a wide range of nozzle exit conditions (excluding 
‘screech’) and include air jets (Westley & Lilley 1952; Lassiter & Hubbard 
1956), rocket motors (Mayes et al. 1959) and jet engines (Howes et al. 1957), 
to mention a few. It is generally observed that the maxima of +-octave band 
sound pressure levels belonging to higher frequency ranges occur nearer the 
nozzle exit while those belonging to lower frequency ranges occur further 
downstream. The net result from the various octave band levels produces a 
total sound pressure level which peaks downstream. Except for details, the 
behaviour of these half-lobe contours does not significantly differ for different 
nozzle exit conditions. The observed near jet noise field can be interpreted 
through results of the present considerations. On this basis, some discussion of the 
control of the ‘damaging’ large-scale wavelike eddies is also presented in this 
section. 

In the present problem, the fine-scale turbulence is essentially confined to the 
region where the free shear layer is structured and is absent in the ambient 
region. However, according to (local) stability theory the large-scale structure, 
though exponentially decaying, still exerts considerable influence in the ambient 
region. This influence is stronger as we proceed downstream for a fixed Po. Thus, 
according to the present model, the near jet noise field is contributed by pro- 
trusions of the large-scale structure into the ambient region. Now, instability 
waves of a given frequency generate sound of the same frequency and the sound 
wavelength is related to Po via the relation h = 80/Mj,50. In  the ambient region 
within a sound wavelength of the shear flow the pressure fluctuations are still 
dominated by the activities of the instability wave. The near jet noise field 
contributed by the developing instability waves is obtained, for instance, in 
terms of the normal intensity level 

following standard definitions. Through use of the second and third relationships 
in (2.5) and taking the time average, we obtain 

IN = IOlog, ,v~+ IZOdb, relative to 10-l2 W/m2, (6.1) 

for a given Me and ,do, where U e p e  is expressed in W/m2. In  the near noise field, 
the relationship between the intensity level and the sound pressure level is 
determined by the local linear theory rather than by an acoustic relationship. 
The sound pressure level S,, is given in terms of the normal intensity by 

[ c M tta:&’ I c2 c2 “)]relativeto2 x 10-4dynes/cm2; (6.3) s,, = IN + 10 log,, 

IN is given by (6.2) and tan 0 by (4.3~). 
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It is instructive first to show the behaviour of IN a t  the border of the shear 
layer and the ambient region. This is illustrated in figure 6 in terms of the per- 
centage of deviation of I N  from the initial l j  = 0 value, [(IN-INo)/INo] x 102. 
This then primarily reflects the streamwise variation, along the edge of the shear 
layer, of loglo[v’p’/(v’p’)o]. For definiteness, a value of IAo12 = is used for 
each Po wave a t  a given Me and corresponds approximately to the broad-band 
initial disturbance levels discussed in $2. The jet flow, because of our specific 
mean flow, corresponds to that of a laboratory adiabatic jet. Figure 6 shows that, 
indeed, low-frequency wave contributions peak further downstream than high- 
frequency wave contributions. In figure 6 (a), which typifies lower Mach numbers 
because all wave speeds are subsonic relative to the ambient sound speed, the 
intensity levels appear as smooth curves, while in figure 6 ( b )  local minima in 
intensity levels occur in regions where the wave speed is near the sonic speed. 

The calculated contour lines of constant IN in the near jet noise field are typi- 
fied by those shown in figure 7 for Me = 1.5 and /3, = 0.2,0-1,0.05 and 0.01. The 
result, common to calculations for Me = 2 and 2.5 as well, is that the higher 
frequency half-lobes occur nearer the nozzle lip while those of lower frequency 
occur further downstream. The calculated near-field behaviour bears a striking 
resemblance to observed near jet noise fields (see, for instance, Howes et al. 1957; 
Mayes et al. 1959). For M ,  > 3 ,  peaks in I ,  occur when the wave speeds are 
supersonic and this certainly suggests explanations of the supersonic far-field 
radiation at  the higher jet speeds. 

We now discuss some methods of control of the development of the large- 
scale wavelike eddies according to our present model. One most obvious way is 
through a change in the initial disturbance energy density level IAo12. Refer- 
ring to IN given by (6.2), a decade change in IAOl2 amounts to a change of 10db. 
In  practice, the sources of the initial energy density levels may be difficult 
to ascertain and to control. Artificially enhancing the level of the fine-scale 
turbulence, through an increase in Rsl in the present model, affords another 
method of control. We have already shown, in figure 5, the effect of increasing 
R,I on the development of energy flux of the instability wave. The effect on the 
near jet noise field is shown in figure 8; the dashed contour lines are the result of 
an increase in R@l by 20 % relative to that for the solid lines and show that the 
near noise field is somewhat shrunk and more confined to the vicinity of the 
shear layer. The comparison is again made for the same l j .  Changes in IN due to 
increases in R?l are entirely contained in the factor IA12/1A012in (6.2). For the 
same l j  all the integrals of the eigenfunctions, I,,, Ip and 4, are the same for a 
fixed Po and Me. We now define a parameter S which reflects the extent of 
suppression, via fine-scale turbulence enhancement : 

where the subscript s indicates the suppressed flow, S = 0 for zero suppression 
and S -+ 1 for ‘complete’ suppression. In  terms of (5.1), then (6.4) can be recast 
in the form 

where 

-- 

8 = 1 -(l~i2/i~o12)s/(l~12/I~012)~ (6.4) 

8 = I - exp{ - ( 1  - wos/go) (gog/a0) SCC)}, 

y(lj) = (Irs-Ip) dlj 

(6.5) 

s: 
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is a universal function of 5 for a fixed Po and Me and is positive for the cases 
considered. The suppressed momentum spreading parameter gBS is inversely 
proportional to the eddy viscosity and is less than vO. The exponential in (6.5) 
thus has a negative argument. Since ,a(,$) increases with 5, suppression is 
more effective as 5 incredses. The parameter S is plotted in figure 9 for Me = 2 
and Po = 0.05. The fictitious maximum S obtainable is when r ~ ~ ~ / c r ~  -+ 0 and 
is shown as the dashed line. Other finite ratios of RTIRT, are shown as solid 
lines. 
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Another alternative in the control of instability-wave development is through 
the control of the initial shear-layer thickness a,, which enters the dimensionless 
frequency parameter Po. Now, for the same Me, the present considerations show 
that a fixed-p, wave gives an I, peak a t  the edge of the shear layer a t  some 

FIGURE 8. The effect of a 20 yo increase in RG1 on the contours of the normal intensity level 
I N  (relative to W/m2) in the near jet noise field for M ,  = 2.0 and /3, = 0.05. 
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location E. In  order to translate this result in terms of the Strouhal number and 
the streamwise distance relative to the nozzle diameter or channel width d,  
consideration of the ratio 8,/d must be made, in which St, = pO/(27r8,/d) and 

Thus for nozzles of different initial shear-layer thickness-to-diameter ratio, 
the relative location of the peak in IN is 

X / d  = < ( r e  e,/80) @ 0 / 4 .  

(./d)ll(X/d,Z = (~0/41/(80/~)z 

for the same 6 and spreading parameter. The ratio of the Strouhal numbers, 
for the same Po, is then St,,/Xt,, = (8,,/d)2/(80/d)l. For definiteness, consider the 
Me = 1.5, lo = 0.1 case where the edge IN peaks a t  about ( 2 8.4 as shown in 
figure 6 (a) .  In  this case, if (80/d)l = 0.05, then Stdl E 0-32 and the peak occurs a t  
(x/d), g 1.2; if (80/d)z E 0.2, then St,, E 0.08 and ( x / d ) ,  z 4.9. The control of the 
ambient induced wave field by changing 8, is discussed by Jones (1971) and is 
also interpretable according to the present considerations. 

Thus to control a wave of a given physical frequency, one has the opportunity 
to delay or hasten its peaking through the control of 8, (or Ue,  of course). This 
could be particularly beneficial to the control of low-frequency long waves, which 
contribute to most of the noise, by delaying their peaking so that they enter 
into the fully merged jet flow without having attained their full potential in, say, 
an IN peak. The fully merged jet contributes to a considerably larger fine-scale 
turbulence activity, i.e. ( l ? ~ ~ ) ~ ~ ~  9 (Rpl)mixlng layer, hence RplI+ enables the in- 
stability wave to decay much more rapidly once the potential core disappears. 
From (3.2b) the mixing-layer thickness develops according to 8/8, - @A*-~. 

When merging occurs, denoted by the subscript m, (8/8,), - d/28,, where 2 is the 
Howarth-Dorodnitsyn transformed diameter. Now, the merging of the mixing 
layer takes place when essentially 9 1 and u* is very nearly the constant similar- 
solutionvalue uz M .,* g 0.58. In  this case, (8/8,), - Em and thus (x/d), - 5,(8,/d), 
which is independent of the (Fold) for the same N,. Thus the peaking of IN for 
a Po wave a t  a given Me could, say, take place before (xld), for small a0/d; IN 
will, for large Z0/d, not have achieved its full peak within the mixing region prior 
to its premature dissolution in the larger Rgl, merged jet flow. 

According to the present interpretations it is not surprising that the St, 
a t  which peaking occurs is larger for large-scale engine tests (Howes et aZ. 1957), 
which are likely to have smaller a0/d, and the corresponding St, is smaller for 
model tests (Mayes et al. 1959) for which 8,/d is likely to be larger. The Strouhal 
number based on the nozzle diameter is not necessarily a unique indicator of 
the ‘peak emitter.’ 

7. Concluding remarks 
It is of course possible to construct emitter models based on the observed 

organized structure of jet flow (Mollo-Christensen 1967) for the purpose of 
evaluating the Lighthill integral (Lighthill 1952, 1962) for the far-field sound 
pressure level. However, this does not furnish the insight into the mechanisms 
through which the source distribution evolves. The present investigation is 



460 J .  T. C. Liu 

directed a t  providing a first physical understanding of such a source distribu- 
tion. The integrand of the Lighthill integral, in terms of the double time deriva- 
tives of the Lighthill stress tensor, can be split into contributions from the 
organized structure and from the fine-scale turbulence according to the fluctua- 
tion splitting procedure discussed in 3 2. The present discussions provide elucida- 
tion only of the former. In  the ambient region outside the jet where the random 
fine-scale turbulence is absent, we have shown that when the instability waves 
are initiated upstream their subsequent downstream development is fully suffi- 
cient to explain the near jet noise field. Within the jet, however, a mixture of 
instability waves and fine-scale random fluctuations exists. It is therefore not 
possible to extract the structure of such waves, particularly if they are weak, 
from existing hot-wire data in their present context. However, the phase-averag- 
ing technique (Hussain & Reynolds 1970; Kendall 1970), together with well- 
controlled upstream forcing, permits the extraction and study of these waves 
within a turbulent free shear flow. The use of such techniques within the jet and 
in sound-field measurements provides the needed experimental studies which 
would point the way towards the better understanding of the large-scale wave- 
like eddies and their role in aerodynamic sound generation. 

The far sound field of the large-scale structure is obtainable more directly 
from the Lighthill integral than by the alternative boundary-value technique 
of distributing equivalent sources on a cylinder surrounding the jet. The source 
region of the large-scale structure protrudes well beyond the confines of the 
jet as we have shown and the local intensity vector is not divergence free. The 
location of such a cylinder must be sufficiently far from the jet so as to enclose 
the entire source region and a retarded potential calculation is required to 
distribute 6he equivalent sources on the cylinder (Maestrello & McDaid 1971). 
If the cylinder cuts into the source region, the far sound field so obtained is, 
of course, entirely arbitrary unless a retarded potential calculation is made 
which includes the source regions enclosed and excluded by the cylinder.? 

That some of the salient observed features of the near jet noise field are re- 
covered in the present much simplified investigation is sufficiently encouraging 
to enable one to suggest future considerations and extensions of the large-scale 
wavelike eddy source distribution problem. An immediate question which would 
naturally arise is the role played by the relatively enhanced turbulent diffusion in 
the fully merged jet flow in the evolution of instability waves. Severe losses of 
energy are suffered by the low-frequency waves which persist further downstream 
into the merged jet. It is naturally expected, from our present point of view, that 
the ‘dominant noise sources ’ suggested by experimental observations of the near 
jet noise field come from the vicinity of the end of the potential core. In  the 
supersonic jet case, this region very nearly coincides with the local mean flow 
sonic region, which is also a consequence of the enhanced turbulent diffusion in 
the merged flow. The consideration of the evolution of instability waves through 
the mixing region and into the merged jet brings out the question of the relative 
importance of symmetric and antisymmetric modes. In the mixing region, where 
higher frequency waves dominate, the symmetric mode is relatively important. 

f I am indebted to P. Westervelt for discussions on this point. 
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After merging, the antisymmetric or ‘sinuous ’ mode of lower frequency is more 
important. These remarks are generally borne out even in two-dimensional 
investigations (Merkine & Liu 1972; Oseberg & Kline 1971). For the round jet, 
the ‘sinuous’ mode corresponds to the n = 1 spiral mode (see, for instance, 
Batchelor & Gill 1962; Lees & Gold 1964). Although extension of the present 
investigation to include geometric effects is important, of more fundamental 
importance is the systematic study of the difficult problem of wave-induced 
Reynolds stresses, which will furnish more insight into the mechanism of energy 
transfer between the large-scale waves and the fine-scale turbulence. Investiga- 
tions of both of these aspects will be reported in later papers. 

It is very clear that, in any consideration of noise sources due to the large-scale 
wavelike structure of the turbulent jet, the history of the evolution of the in- 
stability waves must, in some way, be taken into account. The proper elucidation 
of the distribution of such large-scale instability-wave sources provides the 
means by which the Lighthill integral can be directly evaluated. 
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FIGURE 1. The turbulent mixing lnycr between two gas streams, pressure = 7 atm. On 
left: N,, velocity = 322 cm/s. On right: He, velocity = 855 cm/s. Similar structure IS 

observed between streams of equal densities and velocities. Instability-wave structure 
is two-dimensional. (Photograph reproduced by kind permission of A. Roshko, GALCIT.) 
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